Semestr Letni 2019
Seminarium z Geometrii Algebraicznej i Algebry Przemiennej
Seminarium odbywa się we wtorki w sali 118 w godzinach 10:15 — 11:45
TERMIN | WYKŁADOWCA | TEMAT |
---|---|---|
26 lutego 2019 | Tomasz Szemberg | Równania wyznacznikowe gładkich powierzchni stopnia 3 |
5 marca 2019 | Piotr Pokora (IM PAN) | I |
12 marca 2019 | Piotr Pokora (IM PAN) | II |
19 marca 2019 | Piotr Pokora (IM PAN) | III |
26 marca 2019 | Adam Czapliński (Siegen) | On Lagrangian Fibrations with designed singular fibres (Abstrakt) |
9 kwietnia 2019 | Tomasz Szemberg, Piotr Pokora (IM PAN) | Wprowadzenie do wiązek |
16 kwietnia 2019 | Piotr Pokora (IM PAN) | Wprowadzenie do wiązek |
7 maja 2019 | Lucja Farnik | Raport z Marburga |
14 maja 2019 | Piotr Pokora | Konfiguracje prostych i ich wlaściwości |
18 maja 2019 (EXTRA TALK !!! 10:15, room 216 UP) | Matthew Stover | Negative curves and hyperbolic codes (Abstrakt) |
28 maja 2019 | Remke Kloosterman (Padova) | 3-divisible sets and Alexander polynomials (Abstrakt) |
11 czerwca 2019 | Piotr Pokora (IM PAN) | Konfiguracje: kombinatoryka i geometria |
- Abstract of Prof. Czapliński talk:
In this talk, we study Lagrangian Fibrations with designed singular fibers. The idea is to construct a $K3$ surface $X$ as a minimal resolution of the singularities of a double cover $Y$ of the plane branched along a reduced but possibly reducible singular sextic $\Sigma$. Moreover, we assume that $\Sigma$ has at worst $A$-$D$-$E$ singularities. This freeness of choosing $\Sigma$ allows us to construct many examples of singular fibres with various singularities. We find an explicit description of the singular fibers of the Lagrangian Fibrations $f\colon M_X(0,2H,\chi)\rightarrow |2H|$. The results shed also some light on the correlation between the degree of the discriminant divisor $\Delta$ and the topology of the corresponding moduli space.
- Abstract of Prof. Stover talk:
Let X be an irreducible smooth geometrically integral projective surface over a field. I will describe an effective upper bound in terms of the Neron–Severi rank of X for the number of irreducible curves on X with negative self-intersection and geometric genus less than b1(X)/4, where b1(X) is the first etale Betti number of X. This is optimal in characteristic p, and the proof involves a hyperbolic analogue of the theory of spherical codes.
- Abstract of Prof. Kloosterman talk:
We will discuss some similarities between the theory of 3-divisible cusps on certain surfaces and the theory of Alexander polynomials of plane curves.