Semestr Zimowy 2021/2022
Prowadzący: prof. dr hab. Tomasz Szemberg
Seminarium odbywa się we wtorki, w godzinach 10:15 — 11:45, w sali 118. Seminarium odbywa się hybrydowo!
TERMIN | WYKŁADOWCA | TEMAT |
---|---|---|
5 października 2021 | Tomasz Szemberg | Klasyfikacja powierzchni |
12 października 2021 | Soenke Rollenske (Marburg) | What do we know about I-surfaces? (Abstrakt) |
19 października 2021 | Piotr Pokora | Arrangements of conics with nodes and tacnodes |
26 października 2021 | Evelia Rosa Garcia Barroso | An explicit deformation of a plane branch with constant $\delta$ invariant |
16 listopada 2021 | Natalia Kupiec | Planes in $P^4$ |
23 listopada 2021 | Marcin Zieliński | About the (non)existence of finite projective planes |
30 listopada 2021 | Marco Golla (Nantes) | Symplectic fillings of divisorial contact structures (Abstrakt) |
7 grudnia 2021 | Filip Rupniewski (IM PAN) | Rank additivity property for small tensors |
18 stycznia 2022 | Tomasz Szemberg | An introduction to the geproci property |
25 stycznia 2022 | Tomasz Szemberg | An introduction to the geproci property II |
- Abstract of Soenke Rollenske talk:
Classically, minimal surfaces of general type with $K_S^2 =1$ and $p_g(S) = 3$ are (minimal resolutions of) double covers of the quadric cone in $\IP^4$ via the bicanonical map and as such easy to understand. Nowadays their moduli space admits a modular compactification, the moduli space of stable surfaces, and in an ongoing project with M. Franciosi, R. Pardini, J. Rana and S. Coughlan we are exploring what we can say about the moduli space and the surfaces it parametrises. (The name I-surfaces was coined by Green-Griffiths-Robles in the exploration of Hodge-theoretic aspects.) The talk will concentrate on the easy and transferable ideas and some pictures and hush over all technical difficulties. - Abstract of Marco Golla talk:
If a (possibly singular) complex curve in a Kaehler surface has positive self-intersection, then it has a symplectically concave neighbourhood, and therefore an associated divisorial contact structures. Motivated by the study of singular symplectic curves in the complex projective plane, we will discuss the existence and classification of fillings of some of these contact structures. This is based on joint work with Laura Starkston.